Versatile subtypes of pericytes and their roles in spinal cord injury repair, bone development and repair

  • Armulik, A., Genove, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    CAS
    PubMed

    Google Scholar

  • Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557–561 (2010).

    CAS
    PubMed

    Google Scholar

  • Dalkara, T., Gursoy-Ozdemir, Y. & Yemisci, M. Brain microvascular pericytes in health and disease. Acta Neuropathol. 122, 1–9 (2011).

    PubMed

    Google Scholar

  • Winkler, E. A. et al. Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol. 125, 111–120 (2013).

    CAS
    PubMed

    Google Scholar

  • Zhou, W. et al. Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell 21, 591–603 e594 (2017).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Oudega, M. Molecular and cellular mechanisms underlying the role of blood vessels in spinal cord injury and repair. Cell Tissue Res. 349, 269–288 (2012).

    CAS
    PubMed

    Google Scholar

  • James, A. W. et al. Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Transl. Med. 1, 510–519 (2012).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Paquet-Fifield, S. et al. A role for pericytes as microenvironmental regulators of human skin tissue regeneration. J. Clin. Investig. 119, 2795–2806 (2009).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Yao, Y., Chen, Z. L., Norris, E. H. & Strickland, S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat. Commun. 5, 3413 (2014).

    PubMed

    Google Scholar

  • Smyth, L. C. D. et al. Markers for human brain pericytes and smooth muscle cells. J. Chem. Neuroanat. 92, 48–60 (2018).

    CAS
    PubMed

    Google Scholar

  • Nakagomi, T., Nakano-Doi, A., Kawamura, M. & Matsuyama, T. Do vascular pericytes contribute to neurovasculogenesis in the central nervous system as multipotent vascular stem cells? Stem Cells Dev. 24, 1730–1739 (2015).

    PubMed

    Google Scholar

  • Collett, G. D. & Canfield, A. E. Angiogenesis and pericytes in the initiation of ectopic calcification. Circ. Res. 96, 930–938 (2005).

    CAS
    PubMed

    Google Scholar

  • Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    CAS
    PubMed

    Google Scholar

  • Kramann, R. et al. Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease. Cell Stem Cell 19, 628–642 (2016).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Chen, W. C. et al. Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells 33, 557–573 (2015).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Xu, J. et al. Comparison of skeletal and soft tissue pericytes identifies CXCR4+ bone forming mural cells in human tissues. Bone Res. 8, 22 (2020).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Dellavalle, A. et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat. Cell Biol. 9, 255–267 (2007).

    CAS
    PubMed

    Google Scholar

  • Bice, B. D. et al. Environmental enrichment induces pericyte and IgA-dependent wound repair and lifespan extension in a colon tumor model. Cell Rep. 19, 760–773 (2017).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Cheng, L. et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153, 139–152 (2013).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Yamauchi, M., Barker, T. H., Gibbons, D. L. & Kurie, J. M. The fibrotic tumor stroma. J. Clin. Investig. 128, 16–25 (2018).

    PubMed
    PubMed Central

    Google Scholar

  • Birbrair, A. et al. How plastic are pericytes? Stem Cells Dev. 26, 1013–1019 (2017).

    PubMed
    PubMed Central

    Google Scholar

  • Guimaraes-Camboa, N. et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20, 345–359 e345 (2017).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Xu, J., Nie, X., Cai, X., Cai, C. L. & Xu, P. X. Tbx18 is essential for normal development of vasculature network and glomerular mesangium in the mammalian kidney. Dev. Biol. 391, 17–31 (2014).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Lyle, L. T. et al. Alterations in pericyte subpopulations are associated with elevated blood-tumor barrier permeability in experimental brain metastasis of breast cancer. Clin. Cancer Res. 22, 5287–5299 (2016).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Farrington-Rock, C. et al. Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110, 2226–2232 (2004).

    CAS
    PubMed

    Google Scholar

  • Göritz, C. et al. A pericyte origin of spinal cord scar tissue. Science 333, 238–242 (2011).

    PubMed

    Google Scholar

  • Birbrair, A. et al. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther. 5, 122 (2014).

    PubMed
    PubMed Central

    Google Scholar

  • Birbrair, A. et al. Type-2 pericytes participate in normal and tumoral angiogenesis. Am. J. Physiol. Cell Physiol. 307, C25–C38 (2014).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Peppiatt, C. M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Yemisci, M. et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15, 1031–1037 (2009).

    CAS
    PubMed

    Google Scholar

  • Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Bell, R. D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Chen, J. et al. CD146 coordinates brain endothelial cell-pericyte communication for blood-brain barrier development. Proc. Natl. Acad. Sci. USA 114, E7622–E7631 (2017).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Winkler, E. A., Bell, R. D. & Zlokovic, B. V. Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol. Neurodegener. 5, 32 (2010).

    PubMed
    PubMed Central

    Google Scholar

  • Sweeney, M. D., Ayyadurai, S. & Zlokovic, B. V. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. 19, 771–783 (2016).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Hassanpour, M. et al. Autophagy modulation altered differentiation capacity of CD146+ cells toward endothelial cells, pericytes, and cardiomyocytes. Stem Cell Res. Ther. 11, 139 (2020).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Chen, J. et al. CD146 is essential for PDGFRbeta-induced pericyte recruitment. Protein Cell 9, 743–747 (2018).

    CAS
    PubMed

    Google Scholar

  • Chen, C. W. et al. Human pericytes for ischemic heart repair. Stem Cells 31, 305–316 (2013).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Wilkinson, F. L. et al. Contribution of VCAF-positive cells to neovascularization and calcification in atherosclerotic plaque development. J. Pathol. 211, 362–369 (2007).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Nehls, V., Denzer, K. & Drenckhahn, D. Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res. 270, 469–474 (1992).

    CAS
    PubMed

    Google Scholar

  • El-Bizri, N. et al. SM22alpha-targeted deletion of bone morphogenetic protein receptor 1A in mice impairs cardiac and vascular development, and influences organogenesis. Development 135, 2981–2991 (2008).

    CAS
    PubMed

    Google Scholar

  • Bruijn, L. E., van den Akker, B., van Rhijn, C. M., Hamming, J. F. & Lindeman, J. H. N. Extreme diversity of the human vascular mesenchymal cell landscape. J. Am. Heart Assoc. 9, e017094 (2020).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Kelly-Goss, M. R., Sweat, R. S., Stapor, P. C., Peirce, S. M. & Murfee, W. L. Targeting pericytes for angiogenic therapies. Microcirculation 21, 345–357 (2014).

    PubMed
    PubMed Central

    Google Scholar

  • Binamé, F. Transduction of extracellular cues into cell polarity: the role of the transmembrane proteoglycan NG2. Mol. Neurobiol. 50, 482–493 (2014).

    PubMed

    Google Scholar

  • Alon, R. & Nourshargh, S. Learning in motion: pericytes instruct migrating innate leukocytes. Nat. Immunol. 14, 14–15 (2013).

    CAS
    PubMed

    Google Scholar

  • Murfee, W. L., Skalak, T. C. & Peirce, S. M. Differential arterial/venous expression of NG2 proteoglycan in perivascular cells along microvessels: identifying a venule-specific phenotype. Microcirculation 12, 151–160 (2005).

    CAS
    PubMed

    Google Scholar

  • Chan-Ling, T. & Hughes, S. NG2 can be used to identify arteries versus veins enabling the characterization of the different functional roles of arterioles and venules during microvascular network growth and remodeling. Microcirculation 12, 539–540 (2005).

    PubMed

    Google Scholar

  • Volz, K. S. et al. Pericytes are progenitors for coronary artery smooth muscle. eLife 4, e10036 (2015).

  • Ivanova, E., Kovacs-Oller, T. & Sagdullaev, B. T. Vascular pericyte impairment and connexin43 gap junction deficit contribute to vasomotor decline in diabetic retinopathy. J. Neurosci. 37, 7580–7594 (2017).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Ahmed, T. A. & El-Badri, N. Pericytes: the role of multipotent stem cells in vascular maintenance and regenerative medicine. Adv. Exp. Med. Biol. 1079, 69–86 (2018).

    CAS
    PubMed

    Google Scholar

  • Crisan, M. et al. Perivascular multipotent progenitor cells in human organs. Ann. N. Y. Acad. Sci. 1176, 118–123 (2009).

    CAS
    PubMed

    Google Scholar

  • Crisan, M., Corselli, M., Chen, W. C. & Peault, B. Perivascular cells for regenerative medicine. J. Cell Mol. Med. 16, 2851–2860 (2012).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Fujimoto, T. & Singer, S. J. Immunocytochemical studies of desmin and vimentin in pericapillary cells of chicken. J. Histochem. Cytochem. 35, 1105–1115 (1987).

    CAS
    PubMed

    Google Scholar

  • Gronthos, S., Simmons, P. J., Graves, S. E. & Robey, P. G. Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone 28, 174–181 (2001).

    CAS
    PubMed

    Google Scholar

  • Hall, A. P., Westwood, F. R. & Wadsworth, P. F. Review of the effects of anti-angiogenic compounds on the epiphyseal growth plate. Toxicol. Pathol. 34, 131–147 (2006).

    CAS
    PubMed

    Google Scholar

  • Passman, J. N. et al. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc. Natl. Acad. Sci. USA 105, 9349–9354 (2008).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Bulut, G. B. et al. KLF4 (Kruppel-Like Factor 4)-dependent perivascular plasticity contributes to adipose tissue inflammation. Arterioscler. Thromb. Vasc. Biol. 41, 284–301 (2021).

    CAS
    PubMed

    Google Scholar

  • Cai, X. et al. Bone marrow derived pluripotent cells are pericytes which contribute to vascularization. Stem Cell Rev. Rep. 5, 437–445 (2009).

    PubMed

    Google Scholar

  • Cejudo-Martin, P., Kucharova, K. & Stallcup, W. B. Role of NG2 proteoglycan in macrophage recruitment to brain tumors and sites of CNS demyelination. Trends Cell Mol. Biol. 11, 55–65 (2016).

    PubMed
    PubMed Central

    Google Scholar

  • Davis, S. W. et al. beta-catenin is required in the neural crest and mesencephalon for pituitary gland organogenesis. BMC Dev. Biol. 16, 16 (2016).

    PubMed
    PubMed Central

    Google Scholar

  • Foster, K. et al. Contribution of neural crest-derived cells in the embryonic and adult thymus. J. Immunol. 180, 3183–3189 (2008).

    CAS
    PubMed

    Google Scholar

  • French, W. J., Creemers, E. E. & Tallquist, M. D. Platelet-derived growth factor receptors direct vascular development independent of vascular smooth muscle cell function. Mol. Cell Biol. 28, 5646–5657 (2008).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Goossens, S. et al. The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization. Blood 117, 5620–5630 (2011).

    CAS
    PubMed

    Google Scholar

  • Hellbach, N. et al. Neural deletion of Tgfbr2 impairs angiogenesis through an altered secretome. Hum. Mol. Genet. 23, 6177–6190 (2014).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Hung, C. et al. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 188, 820–830 (2013).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Lopes, M. et al. Msx genes define a population of mural cell precursors required for head blood vessel maturation. Development 138, 3055–3066 (2011).

    CAS
    PubMed

    Google Scholar

  • Lowe, K. L. et al. Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development. Blood 125, 3769–3777 (2015).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Maes, C. et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev. Cell 19, 329–344 (2010).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Tomita, Y. et al. Ninjurin 1 mediates peripheral nerve regeneration through Schwann cell maturation of NG2-positive cells. Biochem. Biophys. Res. Commun. 519, 462–468 (2019).

    CAS
    PubMed

    Google Scholar

  • Trost, A. et al. Characterization of dsRed2-positive cells in the doublecortin-dsRed2 transgenic adult rat retina. Histochem. Cell Biol. 142, 601–617 (2014).

    CAS
    PubMed

    Google Scholar

  • Venkatesan, C., Birch, D., Peng, C. Y. & Kessler, J. A. Astrocytic beta1-integrin affects cellular composition of murine blood brain barrier in the cerebral cortex. Int J. Dev. Neurosci. 44, 48–54 (2015).

    CAS
    PubMed

    Google Scholar

  • Yang, W. et al. Bmp2 is required for odontoblast differentiation and pulp vasculogenesis. J. Dent. Res. 91, 58–64 (2012).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zeisberg, E. M., Potenta, S., Xie, L., Zeisberg, M. & Kalluri, R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67, 10123–10128 (2007).

    CAS
    PubMed

    Google Scholar

  • Zhang, J. & Link, D. C. Targeting of mesenchymal stromal cells by Cre-recombinase transgenes commonly used to target osteoblast lineage cells. J. Bone Min. Res. 31, 2001–2007 (2016).

    CAS

    Google Scholar

  • Sierra, R. et al. Contribution of neural crest and GLAST+ Wnt1+ bone marrow pericytes with liver fibrogenesis and/or regeneration. Liver Int. 40, 977–987 (2020).

    CAS
    PubMed

    Google Scholar

  • El Masri, W. S. & Kumar, N. Traumatic spinal cord injuries. Lancet (Lond., Engl.) 377, 972–974 (2011).


    Google Scholar

  • Fan, B. et al. Microenvironment imbalance of spinal cord injury. Cell Transplant 27, 853–866 (2018).

    PubMed
    PubMed Central

    Google Scholar

  • Norden, D. M. et al. Bone marrow-derived monocytes drive the inflammatory microenvironment in local and remote regions after thoracic spinal cord injury. J. Neurotrauma 36, 937–949 (2018).

  • Kumar, N., Osman, A. & Chowdhury, J. R. Traumatic spinal cord injuries. J. Clin. Orthop. Trauma 8, 116–124 (2017).

    PubMed
    PubMed Central

    Google Scholar

  • Taoka, Y. & Okajima, K. Spinal cord injury in the rat. Prog. Neurobiol. 56, 341–358 (1998).

    CAS
    PubMed

    Google Scholar

  • Silva, N. A., Sousa, N., Reis, R. L. & Salgado, A. J. From basics to clinical: a comprehensive review on spinal cord injury. Prog. Neurobiol. 114, 25–57 (2014).

    PubMed

    Google Scholar

  • Hurtado, A. et al. Poly (D,L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Biomaterials 27, 430–442 (2006).

    CAS
    PubMed

    Google Scholar

  • Lee, J. Y., Kim, H. S., Choi, H. Y., Oh, T. H. & Yune, T. Y. Fluoxetine inhibits matrix metalloprotease activation and prevents disruption of blood-spinal cord barrier after spinal cord injury. Brain 135, 2375–2389 (2012).

    PubMed

    Google Scholar

  • Kisler, K. et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat. Neurosci. 20, 406–416 (2017).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Ryu, B. et al. Allogeneic adipose-derived mesenchymal stem cell sheet that produces neurological improvement with angiogenesis and neurogenesis in a rat stroke model. J. Neurosurg. 132, 442–455 (2019).

  • Shaw, I., Rider, S., Mullins, J., Hughes, J. & Peault, B. Pericytes in the renal vasculature: roles in health and disease. Nat. Rev. Nephrol. 14, 521–534 (2018).

    CAS
    PubMed

    Google Scholar

  • Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Investig. 111, 1287–1295 (2003).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Alarcon-Martinez, L. et al. Capillary pericytes express alpha-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. Elife 7, e34861 (2018).

  • Cheng, J. et al. Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol. 136, 507–523 (2018).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Hesp, Z. C. et al. Proliferating NG2-cell-dependent angiogenesis and scar formation alter axon growth and functional recovery after spinal cord injury in mice. J. Neurosci. 38, 1366–1382 (2018).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Starting the scar: a primary role for pericytes? Nat. Med. 17, 1052–1053 (2011).

  • Dias, D. O. et al. Reducing pericyte-derived scarring promotes recovery after spinal cord injury. Cell 173, 153–165 e122 (2018).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Caporali, A. et al. Contribution of pericyte paracrine regulation of the endothelium to angiogenesis. Pharm. Ther. 171, 56–64 (2017).

    CAS

    Google Scholar

  • Yamadera, M. et al. Microvascular disturbance with decreased pericyte coverage is prominent in the ventral horn of patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 16, 393–401 (2015).

    PubMed

    Google Scholar

  • Rozycka, J., Brzoska, E. & Skirecki, T. Aspects of pericytes and their potential therapeutic use. Postepy Hig. Med Dosw (Online) 71, 186–197 (2017).


    Google Scholar

  • Katare, R. et al. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ. Res. 109, 894–906 (2011).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Tachibana, M., Yamazaki, Y., Liu, C. C., Bu, G. & Kanekiyo, T. Pericyte implantation in the brain enhances cerebral blood flow and reduces amyloid-beta pathology in amyloid model mice. Exp. Neurol. 300, 13–21 (2018).

    CAS
    PubMed

    Google Scholar

  • Coatti, G. C. et al. Pericytes extend survival of ALS SOD1 mice and induce the expression of antioxidant enzymes in the murine model and in IPSCs derived neuronal cells from an ALS patient. Stem Cell Rev. 13, 686–698 (2017).

    CAS

    Google Scholar

  • Winkler, E. A., Bell, R. D. & Zlokovic, B. V. Central nervous system pericytes in health and disease. Nat. Neurosci. 14, 1398–1405 (2011).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Oh, J. S. et al. Hypoxia-preconditioned adipose tissue-derived mesenchymal stem cell increase the survival and gene expression of engineered neural stem cells in a spinal cord injury model. Neurosci. Lett. 472, 215–219 (2010).

    CAS
    PubMed

    Google Scholar

  • Ding, W. G., Yan, W. H., Wei, Z. X. & Liu, J. B. Difference in intraosseous blood vessel volume and number in osteoporotic model mice induced by spinal cord injury and sciatic nerve resection. J. Bone Min. Metab. 30, 400–407 (2012).


    Google Scholar

  • Yokota, K. et al. Periostin promotes scar formation through the interaction between pericytes and infiltrating monocytes/macrophages after spinal cord injury. Am. J. Pathol. 187, 639–653 (2017).

    CAS
    PubMed

    Google Scholar

  • Hill, J., Rom, S., Ramirez, S. H. & Persidsky, Y. Emerging roles of pericytes in the regulation of the neurovascular unit in health and disease. J. Neuroimmune Pharm. 9, 591–605 (2014).


    Google Scholar

  • Tran, A. P., Warren, P. M. & Silver, J. The biology of regeneration failure and success after spinal cord injury. Physiol. Rev. 98, 881–917 (2018).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Ehm, O. et al. RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. J. Neurosci. 30, 13794–13807 (2010).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Shibata, T. et al. Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J. Neurosci. 17, 9212–9219 (1997).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Wynn, T. A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Investig. 117, 524–529 (2007).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Narang, A. & Zheng, B. To scar or not to scar. Trends Mol. Med. 24, 522–524 (2018).

    PubMed
    PubMed Central

    Google Scholar

  • Dias, D. O. & Goritz, C. Fibrotic scarring following lesions to the central nervous system. Matrix Biol. 68-69, 561–570 (2018).

    CAS
    PubMed

    Google Scholar

  • Chim, S. M. et al. Angiogenic factors in bone local environment. Cytokine Growth Factor Rev. 24, 297–310 (2013).

    CAS
    PubMed

    Google Scholar

  • Zhu, S. et al. Endothelial cells produce angiocrine factors to regulate bone and cartilage via versatile mechanisms. Theranostics 10, 5957–5965 (2020).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Lamagna, C. & Bergers, G. The bone marrow constitutes a reservoir of pericyte progenitors. J. Leukoc. Biol. 80, 677–681 (2006).

    CAS
    PubMed

    Google Scholar

  • Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Krautler, N. J. et al. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150, 194–206 (2012).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zhao, H. et al. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell 14, 160–173 (2014).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Diaz-Flores, L., Gutierrez, R., Lopez-Alonso, A., Gonzalez, R. & Varela, H. Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin. Orthop. Relat. Res. 280–286 (1992).

  • Doherty, M. J. et al. Vascular pericytes express osteogenic potential in vitro and in vivo. J. Bone Min. Res. 13, 828–838 (1998).

    CAS

    Google Scholar

  • Supakul, S. et al. Pericytes as a source of osteogenic cells in bone fracture healing. Int. J. Mol. Sci. 20, 1079 (2019).

  • Meyers, C. A. et al. Early immunomodulatory effects of implanted human perivascular stromal cells during bone formation. Tissue Eng. Part A 24, 448–457 (2018).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Lee, S. et al. Brief report: human perivascular stem cells and nel-like protein-1 synergistically enhance spinal fusion in osteoporotic rats. Stem Cells 33, 3158–3163 (2015).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • James, A. W. et al. An abundant perivascular source of stem cells for bone tissue engineering. Stem Cells Transl. Med. 1, 673–684 (2012).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • James, A. W. et al. Use of human perivascular stem cells for bone regeneration. J. Vis. Exp. e2952 (2012).

  • Askarinam, A. et al. Human perivascular stem cells show enhanced osteogenesis and vasculogenesis with Nel-like molecule I protein. Tissue Eng. Part A 19, 1386–1397 (2013).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Chung, C. G. et al. Human perivascular stem cell-based bone graft substitute induces rat spinal fusion. Stem Cells Transl. Med. 3, 1231–1241 (2014).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Tawonsawatruk, T. et al. Adipose derived pericytes rescue fractures from a failure of healing–non-union. Sci. Rep. 6, 22779 (2016).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • James, A. W. et al. Pericytes for the treatment of orthopedic conditions. Pharm. Ther. 171, 93–103 (2017).

    CAS

    Google Scholar

  • James, A. W. & Peault, B. Perivascular mesenchymal progenitors for bone regeneration. J. Orthop. Res. 37, 1221–1228 (2019).

    PubMed
    PubMed Central

    Google Scholar

  • Baker, A. H. & Peault, B. A Gli(1)ttering role for perivascular stem cells in blood vessel remodeling. Cell Stem Cell 19, 563–565 (2016).

    CAS
    PubMed

    Google Scholar

  • Jotereau, F. V. & Le Douarin, N. M. The development relationship between osteocytes and osteoclasts: a study using the quail-chick nuclear marker in endochondral ossification. Dev. Biol. 63, 253–265 (1978).

    CAS
    PubMed

    Google Scholar

  • Salazar, V. S., Gamer, L. W. & Rosen, V. BMP signalling in skeletal development, disease and repair. Nat. Rev. Endocrinol. 12, 203–221 (2016).

    CAS
    PubMed

    Google Scholar

  • Ahi, E. P. Signalling pathways in trophic skeletal development and morphogenesis: Insights from studies on teleost fish. Dev. Biol. 420, 11–31 (2016).

    CAS
    PubMed

    Google Scholar

  • Diaz-Flores, L. Jr et al. Cell sources for cartilage repair; contribution of the mesenchymal perivascular niche. Front. Biosci. 4, 1275–1294 (2012).


    Google Scholar

  • Grcevic, D. et al. In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells 30, 187–196 (2012).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Diaz-Flores, L., Gutierrez, R., Gonzalez, P. & Varela, H. Inducible perivascular cells contribute to the neochondrogenesis in grafted perichondrium. Anat. Rec. 229, 1–8 (1991).

    CAS
    PubMed

    Google Scholar

  • Zhang, X. et al. The Nell-1 growth factor stimulates bone formation by purified human perivascular cells. Tissue Eng. Part A 17, 2497–2509 (2011).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Rajashekhar, G. et al. IFATS collection: adipose stromal cell differentiation is reduced by endothelial cell contact and paracrine communication: role of canonical Wnt signaling. Stem Cells 26, 2674–2681 (2008).

    PubMed

    Google Scholar

  • Meury, T., Verrier, S. & Alini, M. Human endothelial cells inhibit BMSC differentiation into mature osteoblasts in vitro by interfering with osterix expression. J. Cell Biochem. 98, 992–1006 (2006).

    CAS
    PubMed

    Google Scholar

  • Mankin, H. J. Nontraumatic necrosis of bone (osteonecrosis). N. Engl. J. Med. 326, 1473–1479 (1992).

    CAS
    PubMed

    Google Scholar

  • Mafi, R., Hindocha, S., Mafi, P., Griffin, M. & Khan, W. S. Sources of adult mesenchymal stem cells applicable for musculoskeletal applications – a systematic review of the literature. Open Orthop. J. 5, 242–248 (2011).

    PubMed
    PubMed Central

    Google Scholar

  • Papakostidis, C., Tosounidis, T. H., Jones, E. & Giannoudis, P. V. The role of “cell therapy” in osteonecrosis of the femoral head. A systematic review of the literature and meta-analysis of 7 studies. Acta Orthop. 87, 72–78 (2016).

    PubMed

    Google Scholar

  • Slobogean, G. P., Sprague, S. A., Scott, T. & Bhandari, M. Complications following young femoral neck fractures. Injury 46, 484–491 (2015).

    CAS
    PubMed

    Google Scholar

  • Gangji, V., Toungouz, M. & Hauzeur, J. P. Stem cell therapy for osteonecrosis of the femoral head. Expert Opin. Biol. Ther. 5, 437–442 (2005).

    CAS
    PubMed

    Google Scholar

  • Zhao, L., Kaye, A. D., Kaye, A. J. & Abd-Elsayed, A. Stem cell therapy for osteonecrosis of the femoral head: current trends and comprehensive review. Curr. Pain. Headache Rep. 22, 41 (2018).

    PubMed

    Google Scholar

  • Li, R. et al. Stem cell therapy for treating osteonecrosis of the femoral head: From clinical applications to related basic research. Stem Cell Res. Ther. 9, 291 (2018).

    PubMed
    PubMed Central

    Google Scholar

  • Mao, L. et al. Efficacy and safety of stem cell therapy for the early-stage osteonecrosis of femoral head: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res. Ther. 11, 445 (2020).

    PubMed
    PubMed Central

    Google Scholar

  • Cordova, L. A. et al. Severe compromise of preosteoblasts in a surgical mouse model of bisphosphonate-associated osteonecrosis of the jaw. J. Craniomaxillofac Surg. 44, 1387–1394 (2016).

    PubMed

    Google Scholar

  • Deyo, R. A., Gray, D. T., Kreuter, W., Mirza, S. & Martin, B. I. United States trends in lumbar fusion surgery for degenerative conditions. Spine 30, 1441–1445 (2005).

    PubMed

    Google Scholar

  • Covas, D. T. et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp. Hematol. 36, 642–654 (2008).

    CAS
    PubMed

    Google Scholar

  • Russell, K. C. et al. Cell-surface expression of neuron-glial antigen 2 (NG2) and melanoma cell adhesion molecule (CD146) in heterogeneous cultures of marrow-derived mesenchymal stem cells. Tissue Eng. Part A 19, 2253–2266 (2013).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Fattal, E. & Kassinos, S. C. Editorial on the special issue “SimInhale”. Eur. J. Pharm. Sci. 113, 1 (2018).

    PubMed

    Google Scholar

  • Iacobaeus, E. et al. Dynamic changes in brain mesenchymal perivascular cells associate with multiple sclerosis disease duration, active inflammation, and demyelination. Stem Cells Transl. Med. 6, 1840–1851 (2017).

    CAS
    PubMed
    PubMed Central

    Google Scholar

Leave a Reply

Your email address will not be published.