Impact of intrauterine growth restriction on cerebral and renal oxygenation and perfusion during the first 3 days after birth

 

  • Varvarigou, A. A. A. J. Pediatr. Endocrinol. Metab. JPEM 23(3), 215–224 (2010).

    CAS
    PubMed

    Google Scholar

  • Rosenberg, A. The IUGR is a newborn. Semin. Perinatol. 32(3), 219–224 (2008).

    PubMed

    Google Scholar

  • Cohen, E., Wong, F. Y., Horne, R. S. & Yiallourou, S. R. Intrauterine growth restriction: Impact on cardiovascular development and function throughout infancy. Pediatr. Res. 79(6), 821–830 (2016).

    CAS
    PubMed

    Google Scholar

  • Jansson, T. & Powell, T. L. Role of the placenta in fetal programming: Underlying mechanisms and potential interventional approaches. Clin. Sci. (Lond) 113(1), 1–13 (2007).

    CAS

    Google Scholar

  • Malhotra, A. et.Neonatal morbidities from fetal Growth Restriction: Pathophysiology & Impact. Front. Endocrinol. (Lausanne) 10, 55 (2019).


    Google Scholar

  • Salavati, N. et.Placental morphometry could play a role when fetal growth restriction is detected. Front. Physiol. 9, 1884 (2018).

    PubMed

    Google Scholar

  • Brown, L. D. & Hay, W. W. Jr. Impact of placental insufficiency on fetal skeletal muscle growth. Mol. Cell Endocrinol. 435, 69–77 (2016).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Baschat, A. A. & Harman, C. R. Antenatal assessment of the growth restricted fetus. Curr. Opin. Obstet. Gynecol. 13(2), 161–168 (2001).

    CAS
    PubMed

    Google Scholar

  • Ley, D. & Marsál, K. Doppler velocimetry in cerebral vessels of small for gestational age infants. Early Hum. Dev. 31(2), 171–180 (1992).

    CAS
    PubMed

    Google Scholar

  • Bertino, E. et. Neonatal growth charts. J. Maternal Fetal Neonatal Medicine. 25(Suppl 1), 67–69 (2012).


    Google Scholar

  • Marsál, K. et.Based on ultrasonically calculated foet weights, intrauterine growth curves. Acta Paediatr. 85(7), 843–848 (1996).

    PubMed

    Google Scholar

  • Baschat, A. A. & Gembruch, U. Revision of the cerebroplacental Doppler rate. Ultrasound Obstet. Gynecol. 21(2), 124–127 (2003).

    CAS
    PubMed

    Google Scholar

  • Lees, C. et.Death and perinatal morbidity in early-onset fetal development restriction: Cohort outcomes from the trial of randomized umbilical/fetal flow in Europe. Ultrasound Obstet. Gynecol. 42(4), 400–408 (2013).

    CAS
    PubMed

    Google Scholar

  • Alderliesten, T. et.Preterm neonates are subject to reference values for regional cerebral oxygen saturation in the first three days of their lives. Pediatr. Res. 79(1–1), 55–64 (2016).

    CAS
    PubMed

    Google Scholar

  • Evans, N. & Kluckow, M. Early determinants of right and left ventricular output in ventilated preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 74(2), F88-94 (1996).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • de Boode W. P. et.Echocardiography was used to assess and manage neonatal shock. Pediatr. Res. 84(Suppl 1), 57–67 (2018).

    PubMed
    PubMed Central

    Google Scholar

  • Kluckow, M. & Evans, N. Superior vena cava flow in newborn infants: A novel marker of systemic blood flow. Arch. Dis. Child. Fetal Neonatal Ed. 82(3), F182–F187 (2000).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Bailey, S. M., Hendricks-Munoz, K. D. & Mally, P. Cerebral, renal, and splanchnic tissue oxygen saturation values in healthy term newborns. Am. J. Perinatol. 31(4), 339–344 (2014).

    PubMed

    Google Scholar

  • Giussani, D. A. Hypoxia and the brain protection of fetuses: Physiological mechanisms J. Physiol. 594(5), 1215–1230 (2016).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Krishnamurthy, M. B., Pharande, P., Whiteley, G., Hodges, R. J. & Malhotra, A. Postnatal middle cerebral artery Dopplers in growth-restricted neonates. Eur. J. Pediatr. 179(4), 571–577 (2020).

    CAS
    PubMed

    Google Scholar

  • Cheung, Y. F., Lam, P. K. & Yeung, C. Y. Early postnatal cerebral Doppler shifts in relation to birthweight Early Hum. Dev. 37(1), 57–66 (1994).

    CAS
    PubMed

    Google Scholar

  • Gerstner, B. et.Hyperoxia results in maturation-dependent cell deaths in the developing white matter. J. Neurosci. 28(5), 1236–1245 (2008).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Felderhoff-Mueser, U. et.The developing brain’s cells die when oxygen is present. Neurobiol. Dis. 17(2), 273–282 (2004).

    CAS
    PubMed

    Google Scholar

  • Cohen, E., Baerts, W. & van Bel, F. Brain-sparing in intrauterine growth restriction: Considerations for the neonatologist. Neonatology 108(4), 269–276 (2015).

    PubMed

    Google Scholar

  • Basu, S., Dewangan, S., Barman, S., Shukla, R. C. & Kumar, A. Postnatal changes in cerebral blood flow velocity in term intra-uterine growth-restricted neonates. Paediatr. Int. Child Health 34(3), 189–193 (2014).

    PubMed

    Google Scholar

  • Ishii, H. et. Comparison of changes in cerebral and systemic perfusion between appropriate- and small-for-gestational-age infants during the first three days after birth. Brain Dev. 36(5), 380–387 (2014).

    PubMed

    Google Scholar

  • Cohen, E. et.Preterm neonates with cerebral oxygenation problems are affected by growth restriction and gender. Arch. Dis. Child Fetal. Neonatal. Neonatal. 101(2), F156–F161 (2016).

    PubMed

    Google Scholar

  • Baik-Schneditz, N. et.Effect of intrauterine Growth Restriction on cerebral Regional Oxygen Saturation in Preterm and Term Neonatals during immediate Postnatal Transition Neonatology 117(3), 324–330 (2020).

    CAS
    PubMed

    Google Scholar

  • Richardson, B. S. & Bocking, A. D. Metabolic and circulatory adaptations to chronic hypoxia in the fetus. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 119(3), 717–723 (1998).

    CAS

    Google Scholar

  • A. de Alencar et.Differentially, early-onset and late-onset fetal development restriction affects the brain development of fetal sheep. Dev. Neurosci. 39(1–4), 141–155 (2017).


    Google Scholar

  • Miller, S. L., Huppi, P. S. & Mallard, C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J. Physiol. 594(4), 807–823 (2016).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Verburg, B. O. et.The Generation R Study: Fetal hemodynamic adaptive modifications related to intrauterine Growth. Circulation 117(5), 649–659 (2008).

    PubMed

    Google Scholar

  • Rizzo, G., Capponi, A., Rinaldo, D., Arduini, D. & Romanini, C. Ventricular ejection force in growth-retarded fetuses. Ultrasound Obstet. Gynecol. 5(4), 247–255 (1995).

    CAS
    PubMed

    Google Scholar

  • Czernik, C., Rhode, S., Metze, B., Bührer, C. & Schmitz, L. Comparison of left ventricular cardiac dimensions between small and appropriate for gestational age preterm infants below 30 weeks of gestation. J. Perinat. Med. 41(2), 219–226 (2013).

    PubMed

    Google Scholar

  • Fouzas, S. et.Intrauterine growth restriction and neonatal cardiac dysfunction. Pediatr. Res. 75(5), 651–657 (2014).

    PubMed

    Google Scholar

  • Leipälä, J. A., Boldt, T., Turpeinen, U., Vuolteenaho, O. & Fellman, V. Cardiac hypertrophy and altered hemodynamic adaptation in growth-restricted preterm infants. Pediatr. Res. 53(6), 989–993 (2003).

    PubMed

    Google Scholar

  • Altın, H. et.Evaluation of cardiac functions in term-small for gestational birth newborns with mild Growth Retardation: A serial Doppler imaging echocardiographic and conventional study. Early Hum. Dev. 88(9), 757–764 (2012).

    PubMed

    Google Scholar

  • Robel-Tillig, E., Knüpfer, M. & Vogtmann, C. Cardiac adaptation in small for gestational age neonates after prenatal hemodynamic disturbances. Early Hum. Dev. 72(2), 123–129 (2003).

    PubMed

    Google Scholar

  • Sehgal, A., Doctor, T. & Menahem, S. Cardiac function and arterial biophysical properties in small for gestational age infants: postnatal manifestations of fetal programming. J. Pediat. 163(5), 1296–1300 (2013).

    PubMed

    Google Scholar

  • Harer, M. W. & Chock, V. Y. Renal tissue oxygenation monitoring: An opportunity to improve kidney outcomes in the vulnerable neonatal population. Front. Pediatr. 8, 241 (2020).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Terstappen, F. et.An observational study of elevated renal tissue oxygenation during premature fetal girdling restricted neonates. PLoS ONE 13(9), e0204268 (2018).

    PubMed
    PubMed Central

    Google Scholar

  • Stigter, R. H., Mulder, E. J., Bruinse, H. W. & Visser, G. H. Doppler studies on the fetal renal artery in the severely growth-restricted fetus. Ultrasound Obstet. Gynecol. 18(2), 141–145 (2001).

    CAS
    PubMed

    Google Scholar

  • Cock, M. L., McCrabb, G. J., Wlodek, M. E. & Harding, R. Effects of prolonged hypoxemia on fetal renal function and amniotic fluid volume in sheep. Am. J. Obstet. Gynecol. 176(2), 320–326 (1997).

    CAS
    PubMed

    Google Scholar

  • Millard, R. W., Baig, H. & Vatner, S. F. Prostaglandin control of the renal circulation in response to hypoxemia in the fetal lamb in utero. Circ. Res. 45(2), 172–179 (1979).

    CAS
    PubMed

    Google Scholar

  • Tanis, J. C. et.Correlation between Doppler flow patterns and neonatal circulation in growth-restricted foetuses Ultrasound Obstet. Gynecol. 48(2), 210–216 (2016).

    CAS
    PubMed

    Google Scholar

  • Evans, R. G. et.The clinical implications of integrative medicine: Haemodynamic influences upon kidney oxygenation Clin. Exp. Pharmacol. Physiol. 40(2), 106–122 (2013).

    CAS
    PubMed

    Google Scholar

  • Kamianowska, M., Szczepański, M., Kulikowska, E. E., Bebko, B. & Wasilewska, A. The tubular damage markers: Neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in newborns with intrauterine growth restriction. Neonatology 115(2), 169–174 (2019).

    CAS
    PubMed

    Google Scholar

  • Voggel, J. et.After intrauterine growth restriction, Vascular tone regulation in the renal interlobar veins of male rats is dysfunctional. Am. J. Physiol. Renal. Physiol. 321(1), F93-f105 (2021).

    CAS
    PubMed

    Google Scholar

  • Xu, N. et. Reactive oxygen species in renal vascular function. Acta Physiol. 229(4), 3477 (2020).


    Google Scholar

  • Darby, J. R. T., Varcoe, T. J., Orgeig, S. & Morrison, J. L. Cardiorespiratory consequences of intrauterine growth restriction: Influence of timing, severity and duration of hypoxaemia. Theriogenology 150, 84–95 (2020).

    PubMed

    Google Scholar

Leave a Reply

Your email address will not be published.